34 research outputs found

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    A Quantum-mechanical Approach for Constrained Macromolecular Chains

    Full text link
    Many approaches to three-dimensional constrained macromolecular chains at thermal equilibrium, at about room temperatures, are based upon constrained Classical Hamiltonian Dynamics (cCHDa). Quantum-mechanical approaches (QMa) have also been treated by different researchers for decades. QMa address a fundamental issue (constraints versus the uncertainty principle) and are versatile: they also yield classical descriptions (which may not coincide with those from cCHDa, although they may agree for certain relevant quantities). Open issues include whether QMa have enough practical consequences which differ from and/or improve those from cCHDa. We shall treat cCHDa briefly and deal with QMa, by outlining old approaches and focusing on recent ones.Comment: Expands review published in The European Physical Journal (Special Topics) Vol. 200, pp. 225-258 (2011

    Corrected potential energy functions for constrained molecular dynamics

    No full text
    Atomic oscillations present in classical molecular dynamics restrict the step size that can be used. Multiple time stepping schemes offer only modest improvements, and implicit integrators are costly and inaccurate. The best approach may be to actually remove the highest frequency oscillations by constraining bond lengths and bond angles, thus permitting perhaps a 4-fold increase in the step size. However, omitting degrees of freedom produces errors in statistical averages, and rigid angles do not bend for strong excluded volume forces. These difficulties can be addressed by an enhanced treatment of holonomic constrained dynamics using ideas from papers of Fixman (1974) and Reich (1995, 1999). In particular, the 1995 paper proposes the use of “flexible” constraints, and the 1999 paper uses a modified potential energy function with rigid constraints to emulate flexible constraints. Presented here is a more direct and rigorous derivation of the latter approach, together with justification for the use of constraints in molecular modeling. With rigor comes limitations, so practical compromises are proposed: simplifications of the equations and their judicious application when assumptions are violated. Included are suggestions for new approaches

    A method for the spatial discretisation of parabolic equations in one space variable

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:7621.07(LU-DCS--217) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore